

DATA SHEET Hall Effect Current Sensor

PN: CHB_AP18S1R

IPN=50~200A

• Supply voltage: DC +15~18 V

Feature

- Closed- loop (compensated) current transducer
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time, no insertion losses
- Low power consumption
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized

1

Electrical data: (Ta=25°C, Vc=+18.0VDC)					
Parmeter Ref	CHB50 AP18S1R	CHB100 AP18S1R	CHB125 AP18S1R	CHB200 AP18S1R	
Rated input Ipn(A)	50	100	125	200	
Measuring range Ip(A)	0~+150	0~+300	0∼+375	0~+600	
Turns ratio Np/NS (T)	1:1000	1:2000	1:1000	1:2000	
Secondary coil resistance RS (Ω)	30	50	30	50	
Output voltage Vo(v)	+1.0*IP/IPN				
Load resistance KL(KΩ)	>10				
Supply voltage VC(V)	(+15 ~ +18) ±5%				
Accuracy XG(%)	@IPN,T=25°C <±0.5				
Offset voltage VOE(mV)	@IP=0,T=25°C <+40				
Temperature variation of VOE VOT(mA/°C)	@IP=0,-40 \sim +85°C $< \pm 0.5$				
Linearity error $\varepsilon r(\%FS)$	< 0.1				
Di/dt accurately followed (A/μs)	> 100				
Response time tra(µs)	@90% of IPN < 1.0				
Power consumption IC(mA)	15+Is				
Bandwidth BW(KHZ)	@IPN DC-DC				

Cheemi Technology Co., Ltd

I Insulation voltage Vd(KV)	(a)50/60Hz, 1min,AC	3.0	
I ilisulation voltage vu(Kv)	(<i>w</i> ,50/00112, 1111111,AC	3.0	

General data:				
Parameter	Value			
Operating temperature TA(°C)	-40 ~ +85			
Storage temperature TS(°C)	- 55∼ +125			
Mass M(g)	25			
Plastic material	PBT G30/G15, UL94- V0;			
	IEC60950-1:2001			
Standards	EN50178:1998			
	SJ20790-2000			

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.

Tel: 025-85996365

The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

